首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   14篇
  2023年   2篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   2篇
  2018年   8篇
  2017年   6篇
  2016年   8篇
  2015年   12篇
  2014年   13篇
  2013年   19篇
  2012年   24篇
  2011年   22篇
  2010年   10篇
  2009年   13篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   7篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1975年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
51.
Methylglyoxal (MG) is a reactive aldehyde derived by glycolysis. In Arabidopsis, MG inhibited light-induced stomatal opening in a dose-dependent manner. It significantly inhibited both inward-rectifying potassium (K(in)) channels in guard-cell protoplasts and an Arabidopsis K(in) channel, KAT1, heterologously expressed in Xenopus oocytes. Thus it appears that MG inhibition of stomatal opening involves MG inhibition of K(+) influx into guard cells.  相似文献   
52.
In this paper, we propose a general model consisting of insects, pests and spiders interacting in an agroecosystem included in a typical homogeneous rural landscape, characterized by a continuous mosaic of cultivated land and a few small patches of grasslands and small woods bounding the fields. The model is general enough to show all the phenomena observed in the agroecosystem. The role of the spider population as a biological controller in the agroecosystem is particularly emphasized. Human intervention by means of pesticide spraying and its relationship with the biological pest controllers is also accounted for.  相似文献   
53.
Salt stress causes oxidative damage and cell death in plants. Plants accumulate proline and glycinebetaine (betaine) to mitigate detrimental effects of salt stress. The aim of this study was to investigate the protective effects of proline and betaine on cell death in NaCl-unadapted tobacco (Nicotiana tabacum) Bright Yellow-2 suspension-cultured cells subjected to salt stress. Salt stress increased reactive oxygen species (ROS) accumulation, lipid peroxidation, nuclear deformation and degradation, chromatin condensation, apoptosis-like cell death and ATP contents. Neither proline nor betaine affected apoptosis-like cell death and G(1) phase population, and increased ATP contents in the 200mM NaCl-stressed cells. However, both of them effectively decreased ROS accumulation and lipid peroxidation, and suppressed nuclear deformation and chromatin condensation induced by severe salt stress. Evans Blue staining experiment showed that both proline and betaine significantly suppressed increment of membrane permeability induced by 200mM NaCl. Furthermore, among the ROS scavenging antioxidant defense genes studied here, mRNA levels of salicylic acid-binding (SAbind) catalase (CAT) and lignin-forming peroxidase (POX) were found to be increased by proline and betaine under salt stress. It is concluded that both proline and betaine provide a protection against NaCl-induced cell death via decreasing level of ROS accumulation and lipid peroxidation as well as improvement of membrane integrity.  相似文献   
54.
Mitotic progression requires the activity of the dual specificity phosphatase, cdc25C. Cdc25C function is inhibited by complex formation with two 14-3-3 isoforms, 14-3-3? and 14-3-3γ. To understand the molecular basis of specific complex formation between 14-3-3 proteins and their ligands, chimeric 14-3-3 proteins were tested for their ability to form a complex with cdc25C in vivo. Specific complex formation between cdc25C and 14-3-3? in vivo requires a phenylalanine residue at position 135 (F135) in 14-3-3?. Mutation of this residue to the corresponding residue present in other 14-3-3 isoforms (F135V) leads to reduced binding to cdc25C and a decrease in the ability to inhibit cdc25C function in vivo. Similarly, F135V failed to rescue the incomplete S phase and the G2 DNA damage checkpoint defects observed in cells lacking 14-3-3?. A comparative analysis of the 14-3-3 structures present in the database suggested that the F135 in 14-3-3? was required to maintain the integrity of a pocket that might be involved in secondary interactions with cdc25C. These results suggest that the specificity of the 14-3-3 ligand interaction may be dependent on structural motifs present in the individual 14-3-3 isoforms.  相似文献   
55.
Silver is a non-essential, toxic metal. The use of silver as an antimicrobial agent in many applications and its presence as a contaminant in foods and air can lead to accumulation in tissues. Despite its widespread use, the systems involved in the uptake of silver into mammalian cells are presently unknown. Previous studies have shown that copper uptake at the plasma membrane by copper transporter 1 (Ctr1) is inhibited by an excess of silver, suggesting that Ctr1 may function in importing silver into cells. In this study we examined directly the role of Ctr1 in the accumulation of silver in mammalian cells using over-expression experiments and mouse embryonic fibroblast cells lacking Ctr1. COS-7 cells transfected to express a human Ctr1-green fluorescent protein (hCtr1-GFP) fusion protein hyper-accumulated silver when incubated in medium supplemented with low micromolar concentrations (2.5–10 μmol/L) of AgNO3. An hCtr1-GFPM150L,M154L variant deficient for copper transport failed to stimulate accumulation of silver. Mouse embryonic fibroblast cells lacking Ctr1 showed approximately a 50% reduction in silver content when incubated in silver-supplemented medium compared to a wild-type isogenic cell line. Collectively, these data demonstrate that Ctr1 transports both copper and silver and suggest that Ctr1 is an important transport protein in the accumulation of silver in mammalian cells.  相似文献   
56.
Genetic manipulation of human cells through delivery of a functional gene or a gene-silencing element is an attractive approach to treat critical diseases very precisely and effectively. Extensive research on the genetic basis of human diseases with complete sequencing of human genome has revealed many vital genes as possible targets in gene therapy programs. On the other hand, to facilitate cell- or tissue-directed delivery of genes and gene-silencing nucleic acid sequences, both genetic and chemical engineering approaches have led to the generation of various viral and nonviral carriers. However, considering the issues of both safety and efficacy, none of the existing vectors is an ideal candidate for clinical use. We recently established pH-sensitive inorganic nanocrystals of carbonate apatite with capability of efficient intracellular delivery and release of associated DNA molecules for subsequent protein expression. Here we show a new synthetic approach for carbonate apatite crystals with stronger affinity toward DNA, leading to significant increment in both transgene delivery and expression. Moreover, CaCl2 and NaCl, existing as the major electrolytes in the bicarbonate-buffered solution, dose-dependently govern particle size and eventually internalization and expression of particle-associated DNA.  相似文献   
57.
Intestinal Cl secretion is stimulated by cyclic AMP (cAMP) and intracellular calcium ([Ca2+]i). Recent studies show that protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac) are downstream targets of cAMP. Therefore, we tested whether both PKA and Epac are involved in forskolin (FSK)/cAMP-stimulated Cl secretion. Human intestinal T84 cells and mouse small intestine were used for short circuit current (Isc) measurement in response to agonist-stimulated Cl secretion. FSK-stimulated Cl secretion was completely inhibited by the additive effects of the PKA inhibitor, H89 (1 µM), and the [Ca2+]i chelator, 1,2-bis-(o-aminophenoxy)-ethane-N,N,N’,N’-tetraacetic acid, tetraacetoxymethyl ester (BAPTA-AM; 25 µM). Both FSK and the Epac activator 8-pCPT-2’-O-Me-cAMP (50 µM) elevated [Ca2+]i, activated Ras-related protein 2, and induced Cl secretion in intact or basolateral membrane–permeabilized T84 cells and mouse ileal sheets. The effects of 8-pCPT-2’-O-Me-cAMP were completely abolished by BAPTA-AM, but not by H89. In contrast, T84 cells with silenced Epac1 had a reduced Isc response to FSK, and this response was completely inhibited by H89, but not by the phospholipase C inhibitor U73122 or BAPTA-AM. The stimulatory effect of 8-pCPT-2’-O-Me-cAMP on Cl secretion was not abolished by cystic fibrosis transmembrane conductance (CFTR) inhibitor 172 or glibenclamide, suggesting that CFTR channels are not involved. This was confirmed by lack of effect of 8-pCPT-2’-O-Me-cAMP on whole cell patch clamp recordings of CFTR currents in Chinese hamster ovary cells transiently expressing the human CFTR channel. Furthermore, biophysical characterization of the Epac1-dependent Cl conductance of T84 cells mounted in Ussing chambers suggested that this conductance was hyperpolarization activated, inwardly rectifying, and displayed a Cl>Br>I permeability sequence. These results led us to conclude that the Epac-Rap-PLC-[Ca2+]i signaling pathway is involved in cAMP-stimulated Cl secretion, which is carried by a novel, previously undescribed Cl channel.  相似文献   
58.
AIM: Isolation and characterization of a bacterial isolate (strain FP10) from banana rhizosphere with innate potential as fungal antagonist and microbial adjuvant in micropropagation of banana. METHODS AND RESULTS: Bacterium FP10 was isolated from the banana rhizosphere and identified as Pseudomonas aeruginosa based on phenotypic, biochemical traits and sequence homology of partial 622-bp fragment of 16S ribosomal DNA (rDNA) amplicon, with the ribosomal database sequences. Strain FP10 displayed antibiosis towards fungi causing wilt and root necrosis diseases of banana. Production of plant growth hormone, indole-3-acetic acid (IAA), siderophores and phosphate-solubilizing enzyme in FP10 was determined. Strain FP10 tested negative for hydrogen cyanide, cellulase and pectinase, the deleterious traits for plant growth. Screening of antibiotic genes was carried out by polymerase chain reaction using gene-specific primers. Amplification of a 745-bp DNA fragment confirmed the presence of phlD, which is a key gene involved in the biosynthesis of 2,4-diacetylphloroglucinol (DAPG) in FP10. The antibiotic produced by FP10 was confirmed as DAPG using thin layer chromatography, high performance liquid chromatography and Fourier transform infrared and tested for fungal antibiosis towards banana pathogens. Procedures for encapsulation of banana shoot tips with FP10 are described. CONCLUSIONS: Strain FP10 exhibited broad-spectrum antibiosis towards banana fungi causing wilt and root necrosis. DAPG by FP10 induced bulb formation and lysis of fungal mycelia. Encapsulation of banana shoot tips with FP10 induced higher frequency of germination (plantlet development) than nontreated controls on Murashige and Skoog basal medium. Treatment of banana plants with FP10 enhanced plant height and reduced the vascular discolouration as a result of Fusarium oxysporum f. sp. cubense FOC. SIGNIFICANCE AND IMPACT OF THE STUDY: Because of the innate potential of fungal antibiosis by DAPG antibiotic and production of siderophore, plant-growth-promoting IAA and phosphatase, the strain FP10 can be used as biofertilizer as well as a biocontrol agent.  相似文献   
59.
60.
Nitric oxide and S-nitrosothiols modulate a variety of important physiological activities. In vascular cells, agents that release NO and donate nitrosonium cation (NO(+)), such as S-nitrosoglutathione, are potent inducers of the antioxidant protein heme oxygenase 1 (HO-1) (Foresti, R., Clark, J. E., Green, C. J., and Motterlini, R. (1997) J. Biol. Chem. 272, 18411-18417; Motterlini, R., Foresti, R., Bassi, R., Calabrese, V., Clark, J. E., and Green, C. J. (2000) J. Biol. Chem. 275, 13613-13620). Here, we report that Angeli's salt (AS) (0.25-2 mm), a compound that releases nitroxyl anion (NO(-)) at physiological pH, induces HO-1 mRNA and protein expression in a concentration- and time-dependent manner, resulting in increased heme oxygenase activity in rat H9c2 cells. A time course analysis revealed that NO(-)-mediated HO-1 expression is transient and gradually disappears within 24 h, in accordance with the short half-life of AS at 37 degrees C (t(12) = 2.3 min). Interestingly, multiple additions of AS at lower concentrations (50 or 100 microm) over a period of time still promoted a significant increase in heme oxygenase activity. Experiments performed using a NO scavenger and the NO electrode confirmed that NO(-), not NO, is the species involved in HO-1 induction by AS; however, the effect on heme oxygenase activity can be amplified by accelerating the rate of NO(-) oxidation. N-Acetylcysteine almost completely abolished AS-mediated induction of HO-1, whereas a glutathione synthesis inhibitor (buthionine sulfoximine) significantly decreased heme oxygenase activation by AS, indicating that sulfydryl groups are crucial targets in the regulation of HO-1 expression by NO(-). We conclude that NO(-), in analogy with other reactive nitrogen species, is a potent inducer of heme oxygenase activity and HO-1 protein expression. These findings indicate that heme oxygenase can act both as a sensor to and target of redox-based mechanisms involving NO and extend our knowledge on the biological function of HO-1 in response to nitrosative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号